If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x^2+80=0
We add all the numbers together, and all the variables
-17x^2+80=0
a = -17; b = 0; c = +80;
Δ = b2-4ac
Δ = 02-4·(-17)·80
Δ = 5440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5440}=\sqrt{64*85}=\sqrt{64}*\sqrt{85}=8\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{85}}{2*-17}=\frac{0-8\sqrt{85}}{-34} =-\frac{8\sqrt{85}}{-34} =-\frac{4\sqrt{85}}{-17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{85}}{2*-17}=\frac{0+8\sqrt{85}}{-34} =\frac{8\sqrt{85}}{-34} =\frac{4\sqrt{85}}{-17} $
| a1=(1)^2-4 | | 228=6(3+7x) | | 8+4(1-3x)=84 | | 2(2x+6)=3(x+1) | | 2*^4x=127 | | 125+n-35=159 | | 16x^2-3x+13=0 | | 125+n*123=369 | | -3(3q+4)=-6q-4 | | -0.08c+6=-0.6c-62 | | n/18=9/5 | | 18/n=9/5 | | h+19/6=5 | | 1.8=x+0.08x | | a=3/6(a+9) | | 2a/2+1=8a/16+2 | | 6a2-23a-4=0 | | 9a+3=3(a-1)+6 | | 1n^2=225 | | 6t2-55t=-9 | | -42/x=3.5 | | 3e-5=17 | | 3a-1/7=3a-8/2 | | 5m^-1=10 | | 0.16(4y-1)=0.08(2y-1) | | 17=5-3e | | n^2-20=61 | | 3(f-7)=5 | | (3x)42=90 | | x+(37-x)=33 | | 8/2=n/n | | 12=p15 |